

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)
 An International Dpen Access, Peer-reviewed, Refereed Journal

GENERALIZED JORDAN DERIVATIONS OF PRIME RINGS

K. L KAUSHIK

Abstract. Let A be any prime ring of $\operatorname{Ch} 6=2$ and $f: A \rightarrow A$
be the generalized Jordan Derivation, then we have
(1) $f(a+b)=f(a)+f(b)$
(2) $f(a b)=f(b) a+b d(a) \forall a, b \in A$ where d is defined as reverse derivation of A. In this paper, it is shown that
(i) $f(a b a)=f(a) b a+a d(b) a+a b d(a) \forall a, b \in A$
(ii) $a^{a+c}=a^{b}+a^{c} \& \quad a^{b}=-b^{a}$ where

$$
a^{\nu}=f(a b)-f(a) b-a d(b) .
$$

We proved Herstein [3] Lemma 3.1 P.1106, Havala [2] Def. P. 1147 as Corollaries along with other results.

Introduction

We define the generalized Jordan derivations of a ring. Let A be any ring of $C h 6=2$. A mapping $f: A \rightarrow A$ is said to be Generalized
Jordan derivation if

$$
\begin{aligned}
f(a+b) & =f(a)+f(b) \\
f(a b) & =f(b) a+b d(a) \quad \forall a, b \in A
\end{aligned}
$$

where d is defined as reverse derivation on A. Our aim is to show that Generalized Jordan Derivation of Prime rings of $\operatorname{Ch} 6=2$ coincident with Generalized derivations.

In Theorem 3.1, we have proved that if f is generalized Jordan Derivations of A then $f(a b a)=f(a) b a+a d(b) a+a b d(a) \forall a, b \in A$.

Key words and phrases. Generalized Jordan derivation, Prime ring, Integral Domain.
1
Replcing f by d we get Herstein [3] Lemma 3.1 P.1106. In Theorem
4.1, we have proved that if $a^{b}=f(a b)-f(a) b-a d(b)$. Then

$$
\begin{aligned}
& a_{b+c}=a_{b}+a_{c} \\
& \quad a^{b}=-b^{a} \forall a, b \in A .
\end{aligned}
$$

Using above results, we have proved very important Theorem 5.1. If A is Prime ring of $C h 6=2$ then any generalized Jordan Derivation is generalized derivation of A i.e. $f(a b)=f(a) b+a d(b)$ which is definition of Generalized derivation given by Havala [2] Def. P.1147. Also we take prime ring of $C h=2$.

1. Generalized Jordan Derivations

In this section, we study the Generalized Jordan Derivations in a ring. Let A be any ring of $C h 6=2$. A mapping $f: A \rightarrow A$ is said to be Generalized Jordan Derivation if

$$
f(a+b)=f(a)+f(b) f(a b)=f(b) a+b d(a) \forall a, b \in A
$$

where d is defined as reverse derivation on A.
Our aims is to show that Generalized Jordan derivation for the prime rings coincident with Generalized derivations.

In this section, we take A be any prime ring of $C h 6=2$
Definition 2.1. (Prime Ring). Let A be any ring. Then A is said to be Prime Ring iff

$$
\begin{aligned}
x a y & = & 0 \forall a \in A \\
\Rightarrow x=0 & \text { or } & y=0
\end{aligned}
$$

Remark. We will use the following two Lemma for drawing Theorem
3.1.

Lemma 2.2. Let A be any ring. For $a \in A$, let

$$
T(a)=\{r \in A: r(a x-x a)=0 \forall x \in A\} .
$$

Then $T(a)$ is two sided Ideal of A.
Lemma 2.3. If A is prime ring and if $a \in A$ is not in Z, centre of A, Then

$$
T(a)=0
$$

3. Generalized Jordan Derivations of Prime rings

Theorem 3.1. If f is generalized Jordan Derivations of A then $f(a b a)=f(a) b a+a d(b) a+a b d(a) \forall a, b \in A$.
Proof. Since $f\left(a^{2}\right)=f(a) a+a d(a)$. Putting $a=a+b$

$$
\begin{align*}
\Rightarrow f(a+b)^{2} & = \\
= & f(a+b)(a+b)+(a+b) d(a+b) \\
= & (f(a)+f(b))(a+b)+(a+b)(d(a)+d(b)) \\
= & f(a) a+f(b) a+f(a) b+f(b) b+a d(a) \tag{1}\\
& +b d(a)+a d(b)+b d(b) .
\end{align*}
$$

Also

$$
\begin{aligned}
f(a+b)^{2} & =f\left(a^{2}+b^{2}+a b+b a\right) \\
& =f\left(a^{2}\right)+f\left(b^{2}\right)+f(a b+b a) \\
& =(f(a) a+a d(a))+(f(b) b+b d(b))+f(a b+b a)(2)
\end{aligned}
$$

From (1) and (2) we have $f(a b+b a)=f(a) b+a d(b)+f(b) a+b d(a)(3)$
Consider $E=f(a(a b+b a)+(a b+b a) a)$. Now

$$
\begin{align*}
E= & f(a)(a b+b a)+a d(a b+b a)+f(a b+b a) a+(a b+b a) d(a) \\
& =f(a) a b+f(a) b a+a d(a b)+a d(b a)+f(a b) a+f(b a) a=+a b d(a)+b a d(a) \text { (by using (3)) } \\
\Rightarrow E= & f(a) a b+f(a) b a+a(d(b) a+b d(a))+a(d(a) b+a d(b) \\
= & +(f(b) a+b d(a)) a+(f(a) b+a d(b)) a+a b d(a)+b a d(a) \\
\Rightarrow E \quad & =f(a) a b+f(a) b a+a d(b) a+a b d(a)+a d(a) b+a^{2} d(b)+f(b) a^{2}+b d(a) a+f(a) b a+a d(b) a+ \\
& a b d(a)+b a d(a) \tag{4}
\end{align*}
$$

On the other hand

$$
\begin{align*}
E & =f\left(a^{2} b+a b a+a b a+b a^{2}\right) \\
& =f\left(a^{2} b+2 a b a+b a^{2}\right) \\
& =f\left(a^{2} b+b a^{2}\right)+2 f(a b a) \\
& =f\left(a^{2}\right) b+a^{2} d(b)+f(b) a^{2}+b d\left(a^{2}\right)+2 f(a b a) \\
& =(f(a) a+a d(a)) b+a^{2} d(b)+f(b) a^{2}+b(d(a) a+a d(a))+2 f(a b a) \\
\Rightarrow E & =f(a) a b+a d(a) b+a^{2} d(b)+f(b) a^{2}+b d(a) a \\
& +b a d(a)+2 f(a b a) \tag{5}
\end{align*}
$$

From (4) and (5) we have
$2 f(a b a)=f(a) b a+a d(b) a+a b d(a)+f(a) b a+a d(b) a+a b d(a)$
$\Rightarrow 2 f(a b a)=2 f(a) b a+2 a d(b) a+2 a b d(a)$
$\Rightarrow f(a b a)=f(a) b a+a d(b) a+a b d(a)$
Hence proved.
Remark. Replacing f by d we get Herstein [3] Lemma 3.1 p.1106.
Corollary 3.2. If f is a generalized Jordan Derivation of A then $\forall a, b, c \in A$

$$
f(a b c+c b a)=f(a) b c+a d(b) c+a b d(c)+f(c) b a+c d(b) a+c b d(a)
$$

Corollary 3.3. If $a, b \in A$ and if $a b=0$. Then $\forall c \in A$

$$
f((b a) c)=f(b a) c+b a d(c)
$$

Corollary 3.4. Let $V=\{a \in A: f(a x)=f(x) a+x d(a) \forall x \in A\}$.
If $a b=0$ then by 3.3

$$
\begin{aligned}
f((b a) c) & =f(b a) c+b a d(c) \\
& \Rightarrow b a \in V
\end{aligned}
$$

4. More results on Generalized Jordan Derivation

Theorem 4.1. If $a^{b}=f(a b)-f(a) b-a d(b)$. Then P. T.
(i) $a_{b+c}=a_{b}+a_{c}$
(ii) $a^{b}=-b^{a} \quad \forall a b \in A$

Proof. (i) Now

$$
\begin{array}{rr}
a_{b}= & f(a b)-f(a) b-a d(b) \\
a_{c}= & f(a c)-f(a) c-a d(c)
\end{array}
$$

Then
(ii)

$$
\begin{aligned}
a_{b}+b_{c} & =f(a b)-f(a c)-f(a)(b+c)-a(d(b)+d(c)) \\
& =f(a b)+f(a c)-f(a)(b+c)-a d(b+c) \\
& =a_{b+c}
\end{aligned}
$$

$$
\begin{aligned}
a_{b}+a_{c}=a_{b+c} & \Rightarrow \text { Proved (i) } \\
& \text { Now }
\end{aligned}
$$

$$
a^{b}=\quad f(a b)-f(a) b-a d(b) b^{a}=\quad f(b a)-f(b) a-b d(a) .
$$

Then $a^{b}+b^{a}=f(a b)+f(b a)-f(a) b-f(b) a-a d(b)-b d(a)$

$$
\begin{aligned}
& = \\
\Rightarrow & f(a) b+a d(b)+f(b) a+b d(a)-f(a) b-a d(b)-f(b) a \\
\Rightarrow & a^{b}+b^{a}=0 \\
& \quad a^{b}{ }^{--b} a^{a} \quad \text { Hence proved (ii) }
\end{aligned}
$$

Our aim is to show that if $a^{b}=0 \forall a, b \in A$

$$
\Rightarrow f(a b)=f(a) b-a d(b)
$$

For this, we will use the following Lemmas
Lemma 4.2. If $t \in V$ and $t 6 \in Z$ and if $u t=t u$. Then $u \in V$
Lemma 4.3. If $a^{2}=0 \quad a \in A$ Then $a \in V$
Lemma 4.4. If $c, d \in V$ Then $b^{a}(c d-d c)=0 \forall a, b \in A$

5. Generalized Jordan Derivation becomes Generalized Derivation

Theorem 5.1. If A is a prime ring of Ch $6=2$ Then any generalized Jordan Derivation becomes Generalized Derivation of A i.e.

$$
f(a b)=f(a) b+a d(b)
$$

Proof. Let $u \in A$ satisfies $u^{2}=0$ By Lemma 4.3, $u \in V$
Also if $x^{2}=0, x$ is also in V. Then by Lemma 4.4

$$
b^{a}(u x-x u)=0 \quad \forall a b \in A
$$

Post multiplying by $u b^{a}(u x-x u) u=0$

$$
\begin{align*}
& \Rightarrow b^{a}\left(u x u-x u^{2}\right)=0 \\
& \Rightarrow b^{a} u x u=0 \quad\left(\because u^{2}=0\right) \forall a, b \in A . \tag{6}
\end{align*}
$$

Now for any $c, d \in A$

$$
c^{d}(c d-d c)=0
$$

\Rightarrow For any $r \in A$

$$
\left((c d-d c) r c^{d}\right)^{2}=0
$$

Let $u=(c d-d c) r c^{d}$ and $x=(a b-b a) s b^{a}$. Then from (6), we have $b^{a}(c d-d c) r c^{d}(a b-b a) s b^{a}(c d-d c) r c^{d}=0 \forall r, s \in$
A.

Post multiplying by $a b-b a$

$$
\begin{aligned}
& \left\{b^{a}(c d-d c) r c^{d}(a b-b a)\right\} s\left\{b^{a}(c d-d c) r c^{d}(a b-b a)\right\} \\
& \quad \Rightarrow b^{a}(c d-d c) r c^{d}(a b-b a)=0 \quad(\because A=\text { Prime ring }) \forall r \in A
\end{aligned}
$$

\Rightarrow either $b^{a}(c d-d c)=0$ or $c^{d}(a b-b a)=0 \forall a, b, c, d \in A$ and A be Prime ring
Putting $d=b$. Then we get either $b^{a}(c b-b c)=0$ or $c^{b}(a b-b a)=0 \forall a, b, c \in A$ (7)
By a result, we have

$$
\begin{equation*}
b^{a}(c b-b c)+c^{b}(a b-b a)=0 \tag{8}
\end{equation*}
$$

From (7) and (8) it is clear that one or other term on LHS of (8) must be zero

$$
\Rightarrow b^{a}(c b-b c)=0 \quad a, b, c \in A
$$

Now for any $a \in A, b^{a} \in T(b)$ and $b 6 \in Z$. Then

$$
\begin{array}{ll}
T(b)=0 & \text { (By Lemma 2.3) } \\
\Rightarrow b^{a}=0 & \forall a \in A .
\end{array}
$$

On the other hand if $b \in Z$ and since $b a=a b \forall a \in A$. Then $b^{a}=0 \forall a \in A$ \Rightarrow we can conclude that

Now

$$
b^{a}=0 \forall a b \in A .
$$

$$
\begin{aligned}
& b^{a}=-a^{b}=0 \\
& \Rightarrow a^{b}=0
\end{aligned}
$$

$$
\Rightarrow f(a b)=f(a) b+a d(b)
$$

$\Rightarrow f$ is Generalized Derivation Hence Proved.
Corollary 5.2. $f(a b)=f(a) b+a d(b)$ This is Havala [2] Def. of Generalized derivation on P.1147.
6. Generalized Jordan Derivation in Prime rings of $C h=2$ Now we re-define the generalized Jordan

Derivation on any ring.
Definition 6.1. Let A be any ring. Then f is said to be Generalized
Jordan Derivation on A if it satisfies the following
(1) $f(a+b)=f(a)+f(b)$
(2) $f(a b)=f(b) a+b d(a)$
(3) $f(a b a)=f(a) b a+a d(b) a+a b d(a)$ where $d=$ reverse derivation. Here (3) is derived from (1) \& (2). Hence we have a theorem.

Theorem 6.2. \therefore Let A be any Prime ring of $C h=2$ and if A is not commutative Integral Domain then any generalized Jordan Derivation is a Generalized Derivation.

Proof. Combining Theorem 5.1 and 6.1 (Re-Definition), we get this result.

Conclusion

We showed that Generalized Jordan Derivatives of Prime Rings of Ch $6=2$ coincides with the Generalized Derivations. We also proved Herstein [3] Lemma 3.1 P.1106, Havala [2] Def. P. 1147 as Corollaries of our results.

References

[1] Kaplansky I. An Introduction to different algebra, Hermann Pasis (1957).
[2] B. Havala, Generalized Derivations in rings, Communication in Algebra, 26 [4] 1998, Page 1147-1166.
[3] I. N. Herstein, Jordan Derivations of Prime rings, Proc. Amer. Math. Soc. 8 (1957) 1104-1110.
[4] E. C. Posner, Derivations in Prime Rings, Proc. Amer. Math. SOC. 8 (1957), Page 1093-1100.
DR. K. L Kaushik: Associate Professor,(Head) Department of Mathematics, Aggarwal College, Ballabgarh, Faridabad, Pin-121004, India Email address: kanhiyalal.kaushik@gmail.com

