ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

GENERALIZED JORDAN DERIVATIONS OF PRIME RINGS

K. L KAUSHIK

Abstract. Let A be any prime ring of Ch 6= 2 and $f: A \rightarrow A$

be the generalized Jordan Derivat<mark>ion, then</mark> we have

(1) f(a + b) = f(a) + f(b)

(2) $f(ab) = f(b)a + bd(a) \forall a, b \in A$ where *d* is defined as reverse derivation of *A*.

In this paper, it is shown that

(i) $f(aba) = f(a)ba + ad(b)a + abd(a) \forall a, b \in A$

(ii) $a^{a+c} = a^b + a^c \& \qquad a^b = -b^a$ where

```
a^v = f(ab) - f(a)b - ad(b).
```

We <mark>proved Herstein [3] Lemm</mark>a 3.<mark>1 P.1106, Havala [2] Def. P</mark>.114<mark>7 as</mark> Corollaries alon<mark>g with other r</mark>esults.

Introduction

We define the generalized Jordan derivations of a ring. Let A be any ring of Ch 6= 2. A mapping $f: A \rightarrow A$ is said to be Generalized

Jordan derivation if

$$f(a+b) = f(a) + f(b)$$

 $f(ab) = f(b)a + bd(a) \quad \forall a, b \in A$

where *d* is defined as reverse derivation on *A*. Our aim is to show that Generalized Jordan Derivation of Prime rings of *Ch* 6= 2 coincident with Generalized derivations.

In Theorem 3.1, we have proved that if *f* is generalized Jordan Derivations of *A* then $f(aba) = f(a)ba + ad(b)a + abd(a) \forall a, b \in A$.

Key words and phrases. Generalized Jordan derivation, Prime ring, Integral Domain.

Replcing *f* by *d* we get Herstein [3] Lemma 3.1 P.1106. In Theorem 4.1, we have proved that if $a^b = f(ab) - f(a)b - ad(b)$. Then

 $a_{b+c} = a_b + a_c$

$$a^b = -b^a \forall a, b \in A.$$

C

Using above results, we have proved very important Theorem 5.1. If *A* is Prime ring of *Ch* 6= 2 then any generalized Jordan Derivation is generalized derivation of *A* i.e. f(ab) = f(a)b + ad(b) which is definition of Generalized derivation given by Havala [2] Def. P.1147. Also we take prime ring of *Ch* = 2.

1. Generalized Jordan Derivations

In this section, we study the Generalized Jordan Derivations in a ring. Let *A* be any ring of *Ch* 6= 2. A mapping $f: A \rightarrow A$ is said to

be Generalized Jordan Derivation if

 $f(a+b) = f(a) + f(b) f(ab) = f(b)a + bd(a) \forall a, b \in A$

where *d* is defined as reverse derivation on *A*.

Our aims is to show that Generalized Jordan derivation for the prime rings coincident with Generalized derivations.

2

In this section, we take *A* be any prime ring of *Ch* 6= 2

Definition 2.1. (Prime Ring). Let A be any ring. Then A is said to be Prime Ring iff

$$xay = 0 \forall a \in A$$

$$\Rightarrow x = 0 \text{ or } y = 0$$

Remark. We will use the following two Lemma for drawing Theorem 3.1.

Lemma 2.2. Let A be any ring. For $a \in A$, let

$$T(a) = \{r \in A : r(ax - xa) = 0 \forall x \in A\}.$$

Then T(a) is two sided Ideal of A.

Lemma 2.3. If A is prime ring and if $a \in A$ is not in Z, centre of

A, Then

T(a)=0.

3. Generalized Jordan Derivations of Prime rings

Theorem 3.1. If f is generalized Jordan Derivations of A then $f(aba) = f(a)ba + ad(b)a + abd(a) \forall a, b \in A$.

Proof. Since
$$f(a^2) = f(a)a + ad(a)$$
. Putting $a = a + b$
 $\Rightarrow f(a + b)^2 = f(a + b)(a + b) + (a + b)d(a + b)$
 $= (f(a) + f(b))(a + b) + (a + b)(d(a) + d(b))$
 $= f(a)a + f(b)a + f(a)b + f(b)b + ad(a)$
 $+bd(a) + ad(b) + bd(b).$ (1)

Also

$$f(a + b)^{2} = f(a^{2} + b^{2} + ab + ba)$$

= $f(a^{2}) + f(b^{2}) + f(ab + ba)$
= $(f(a)a + ad(a)) + (f(b)b + bd(b)) + f(ab + ba)$ (2)

From (1) and (2) we have f(ab + ba) = f(a)b + ad(b) + f(b)a + bd(a) (3)

Consider E = f(a(ab + ba) + (ab + ba)a). Now

$$E = f(a)(ab + ba) + ad(ab + ba) + f(ab + ba)a + (ab + ba)d(a)$$

= f(a)ab + f(a)ba + ad(ab) + ad(ba) + f(ab)a + f(ba)a = +abd(a) + bad(a) (by using (3))

$$\Rightarrow E = f(a)ab + f(a)ba + a(d(b)a + bd(a)) + a(d(a)b + ad(b))$$
$$= +(f(b)a + bd(a))a + (f(a)b + ad(b))a + abd(a) + bad(a)$$

$$\Rightarrow E = f(a)ab + f(a)ba + ad(b)a + abd(a) + ad(a)b + a^{2}d(b) + f(b)a^{2} + bd(a)a + f(a)ba + ad(b)a + abd(a) + bad(a) + bad(a)$$
(4)

On the other hand

Ε

$$= f(a^2b + aba + aba + ba^2)$$

$$= f(a^2b + 2aba + ba^2)$$

$$= f(a^2b + ba^2) + 2f(aba)$$

$$= \int f(a^2)b + a^2d(b) + f(b)a^2 + bd(a^2) + 2f(aba)$$

$$= (f(a)a + ad(a))b + a^{2}d(b) + f(b)a^{2} + b(d(a)a + ad(a)) + 2f(aba)$$

$$\Rightarrow E = f(a)ab + ad(a)b + a^{2}d(b) + f(b)a^{2} + bd(a)a$$
$$+bad(a) + 2f(aba)$$

(5)

16,1

From (4) and (5) we have

$$2f(aba) = f(a)ba + ad(b)a + abd(a) + f(a)ba + ad(b)a + abd(a)$$

$$\Rightarrow 2f(aba) = 2f(a)ba + 2ad(b)a + 2abd(a)$$

$$\Rightarrow f(aba) = f(a)ba + ad(b)a + abd(a)$$

Hence proved.

Remark. Replacing *f* by *d* we get Herstein [3] Lemma 3.1 p.1106.

Corollary 3.2. If f is a generalized Jordan Derivation of A then \forall a,b,c \in A

f(abc + cba) = f(a)bc + ad(b)c + abd(c) + f(c)ba + cd(b)a + cbd(a)

Corollary 3.3. *If* $a, b \in A$ *and if* ab = 0*. Then* $\forall c \in A$

$$f((ba)c) = f(ba)c + bad(c)$$

Corollary 3.4. *Let* $V = \{a \in A : f(ax) = f(x)a + xd(a) \forall x \in A\}$. *If* ab = 0 *then by* 3.3

$$f((ba)c) = f(ba)c + bad(c)$$
$$\Rightarrow b \ a \in V$$

4. More results on Generalized Jordan Derivation

Theorem 4.1. If $a^b = f(ab) - f(a)b - ad(b)$. Then P. T. (i) $a_{b+c} = a_b + a_c$

204

(ii)
$$a^{b} = -b^{a}$$
 $\forall a b \in A$
Proof: (i) Now
 $a^{b} = f(ab) - f(a)b - ad(b)$
 $a_{c} = f(ac) - f(a)c - ad(c)$
Then
 $a^{b} + b^{c} = f(ab) - f(ac) - f(a)(b + c) - a(d(b) + d(c))$
 $= f(ab) + f(ac) - f(a)(b + c) - ad(b) + c)$
 $= a^{b+c}$
 $a^{b} = f(ab) + f(ac) - f(a)(b + c) - ad(b) + c)$
 $a^{b} = f(ab) - f(a)b - ad(b) b^{a} = f(ba) - f(b)a - bd(a).$
Then $a^{b} + b^{a} = f(ab) + f(ba) - f(a)b - f(b)a - ad(b) - bd(a)$
 $= f(a)b + ad(b) + f(b)a + bd(a) - f(a)b - ad(b) - bd(a)$
 $\Rightarrow a^{b} + b^{a} = 0$
 $\Rightarrow a^{b} + b^$

Lemma 4.3. If $a^2 = 0$ $a \in A$ Then $a \in V$

Lemma 4.4. If $c,d \in V$ Then $b^{a}(cd - dc) = 0 \forall a, b \in A$

5. Generalized Jordan Derivation becomes Generalized Derivation

Theorem 5.1. If A is a prime ring of Ch 6= 2 Then any generalized Jordan Derivation becomes Generalized Derivation of A i.e.

$$f(ab) = f(a)b + ad(b)$$

Proof. Let $u \in A$ satisfies $u^2 = 0$ By Lemma 4.3, $u \in V$

Also if $x^2 = 0$, x is also in V. Then by Lemma 4.4

$$b^a(ux - xu) = 0 \qquad \forall a \ b \in A$$

Post multiplying by $u b^a(ux - xu)u = 0$

$$\Rightarrow b^{a}(uxu - xu^{2}) = 0$$

$$\Rightarrow b^{a}uxu = 0 \qquad (\because u^{2} = 0) \forall a, b \in A.$$
(6)

Now for any $c, d \in A$

$$c^d(cd-dc)=0$$

 \Rightarrow For any $r \in A$

 $((cd - dc)rc^d)^2 = 0$

Let $u = (cd - dc)rc^d$ and $x = (ab - ba)sb^a$. Then from (6), we have $b^a(cd - dc)rc^d(ab - ba)sb^a(cd - dc)rc^d = 0 \forall r, s \in C^d$.

А.

Post multiplying by
$$ab - ba$$

 $\{b^a(cd - dc)rc^d(ab - ba)\}$ s $\{b^a(cd - dc)rc^d(ab - ba)\}$
 $\Rightarrow b^a(cd - dc)rc^d(ab - ba) = 0$ (:: A = Prime ring) $\forall r \in A$
 \Rightarrow either $b^a(cd - dc) = 0$ or $c^d(ab - ba) = 0 \forall a, b, c, d \in A$ and A be Prime ring
Putting $d = b$. Then we get either $b^a(cb - bc) = 0$ or $c^b(ab - ba) = 0 \forall a, b, c \in A$ (7)

By a result, we have

$$b^{a}(cb - bc) + c^{b}(ab - ba) = 0$$
 (8)

From (7) and (8) it is clear that one or other term on LHS of (8) must be zero

$$\Rightarrow b^{a}(cb - bc) = 0 \qquad a,b,c \in A.$$

Now for any $a \in A$, $b^a \in T(b)$ and $b \in \overline{Z}$. Then

 $T(b) = 0 \qquad (By Lemma 2.3)$ $\Rightarrow b^{a} = 0 \qquad \forall a \in A.$

On the other hand if $b \in Z$ and since $ba = ab \forall a \in A$. Then $b^a = 0 \forall a \in A$ \Rightarrow we can conclude that

$$b^a = 0 \forall a b \in A$$

Now

$$b^{a} = -a^{b} = 0$$
$$\Rightarrow a^{b} = 0$$

 $\Rightarrow f(ab) = f(a)b + ad(b)$

 \Rightarrow *f* is Generalized Derivation Hence Proved.

Corollary 5.2. f(ab) = f(a)b + ad(b) This is Havala [2] Def. of Generalized derivation on P.1147.

6. Generalized Jordan Derivation in Prime rings of Ch = 2 Now we re-define the generalized Jordan

Derivation on any ring.

Definition 6.1. Let *A* be any ring. Then *f* is said to be Generalized Jordan Derivation on *A* if it satisfies the following

(1) f(a + b) = f(a) + f(b)

$$(2) f(ab) = f(b)a + bd(a)$$

(3) f(aba) = f(a)ba+ad(b)a+abd(a) where d = reverse derivation. Here (3) is derived from (1) & (2). Hence we have a theorem.

Theorem 6.2. \therefore Let A be any Prime ring of Ch = 2 and if A is not commutative Integral Domain then any generalized Jordan Derivation is a Generalized Derivation.

Proof. Combining Theorem 5.1 and 6.1 (Re-Definition), we get this result.

Conclusion

We showed that Generalized Jordan Derivatives of Prime Rings of Ch 6= 2 coincides with the Generalized Derivations. We also proved Herstein [3] Lemma 3.1 P.1106, Havala [2] Def. P.1147 as Corollaries of our results.

References

[1] Kaplansky I. An Introduction to different algebra, Hermann Pasis (1957).

[2] B. Havala, Generalized Derivations in rings, Communication in Algebra, 26 [4] 1998, Page 1147-1166.

[3] I. N. Herstein, Jordan Derivations of Prime rings, Proc. Amer. Math. Soc. 8 (1957) 1104-1110.

[4] E. C. Posner, *Derivations in Prime Rings*, Proc. Amer. Math. SOC. 8 (1957), Page 1093-1100.

DR. K. L Kaushik: Associate Professor, (Head) Department of Mathematics, Aggarwal College, Ballabgarh, Faridabad, Pin-121004, India *Email address*: kanhiyalal.kaushik@gmail.com

